the structure of a new isotetracenone antibiotic, capoamycin

Yoichi Hayakawa, Kazuo Furihata, Haruo Seto and Noboru O$t a k e *$ Institute of Applied Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan 113

Summary: Based on ${ }^{1} H$ and ${ }^{13}$ C NMR spectral data and chemical degradation, the structure of capoamycin, a new isotetracenone antibiotic has been determined as shown in Fig. 1.

Capoamycin is a new antitumor antibiotic produced by streptomyces capoamus No. 23-41, which belongs to the isotetracenone antibiotic group. 1) This substance induced differentiation of mouse myeloid leukemia cells (Mi) and prolonged the survival periods of mice bearing Ehrlich ascites carcinoma.

The physicochemical properties of capoamycin (1) are as follows:orange yellow powder, no definite m.p.; FAB-MS, m/z $724(M+d i e t h a n o l a m i n e+H)^{+}$;

 305(139) and 442(100). The IR spectrum of (KBr) showed the absorptions due to hydroxyl groups (3420 cm-1), an unsaturated ester ($1710 \mathrm{~cm} \mathrm{~cm}^{-1}$), an unsaturated ketone in a 6 -membered ring ($1690 \mathrm{~cm}^{-1}$), a non-chelated quinone $\left(1670 \mathrm{~cm}^{-1}, \mathrm{sh}\right)$ and a chelated quinone carbonyl group ($1638 \mathrm{~cm}^{-1}$).

Fig. 1. The structure of capoamycin (1)

The $400 \mathrm{MHz}^{1} \mathrm{H}$ NMR spectrum ${ }^{3}$) of 1 in CDCl_{3} revealed the following signals: $\delta 12.25$ (s, exchangeable, $8-0 H$) , $7.84(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 10-\mathrm{H}$) , 7.58 ($\mathrm{d}, \mathrm{J}=7.6$, $11-$ H) , $6.91(\mathrm{~d}, \mathrm{~J}=10.0,6-H), 6.43(\mathrm{~d}, \mathrm{~J}=10.0,5-\mathrm{H}), 6.22(b r . s, 2-\mathrm{H}), 2.76(\mathrm{~d}$, $\mathrm{J}=18.8,4-\mathrm{Ha}$) , $2.51\left(\mathrm{~d}, \mathrm{~J}=18.8,4-\mathrm{Hb}\right.$) and $1.94\left(3 \mathrm{H}, \mathrm{s}, 3-\mathrm{CH}_{3}\right)$ ascribed to a modified benz[a]anthraquinone chromophore which is characteristic to the isotetracenone antibiotics; 54.87 (dd, $\left.J=11.2,1.6,1^{\prime}-H\right), 4.64$ (dd, J=9.4, 9.0, $4^{\prime}-H$) $3.97\left(d d d, J=11.0,9.0,5.3,3^{\prime}-H\right), 3.66\left(d q, J=9.4,6.0,5^{\prime}-H\right)$, 2.57 (ddd, J=11.3, 5.3, 1.6, $2^{\prime}-\mathrm{Heq}$), 1.51 (ddd, J=11.3, 11.2, 11.1, $2^{\prime}-\mathrm{Hax}$) and $1.30\left(3 H, d, J=6.0,6^{\prime}-H\right)$ assignable to a B-olivoside moiety; $\quad 7.33$ (m, $\left.3^{\prime \prime}-\mathrm{H}\right), 6.19\left(2 \mathrm{H}, \mathrm{m}, 4^{\prime \prime}-\mathrm{H}\right.$ and $\left.5^{\prime \prime}-\mathrm{H}\right), 5.87(\mathrm{~d}, \mathrm{~J}=15.4,2 \mathrm{H}-\mathrm{H}), 2.19$ (2 H , dt , $\left.J=5.4,7.1,6^{\prime \prime}-H_{2}\right), 1.44\left(2 H, t t, J=7.3,7.1,7 "-H_{2}\right), 1.31\left(4 \mathrm{H}, \mathrm{m}, 8 \mathrm{H}-\mathrm{H}_{2}\right.$ and $\left.9 "-H_{2}\right)$ and $0.90\left(3 H, t, J=7.4,10^{\prime \prime}-H_{3}\right)$ due to a $2,4-d e c a d i e n o i c$ acid side chain.

Based on $\left\{{ }^{13} \mathrm{C}-{ }^{1} \mathrm{H}\right\}$ selective proton decoupling experiments ${ }^{3}$) of 1 at 100 MHz , the following signals have been assigned (seefig. 1): $\delta 78.8$ (d, $C-41$), 74.3 $\left(d, C-5^{\prime}\right), 71.5\left(d, c-3^{\prime}\right), 71.2\left(d, c-1^{\prime}\right), 40.1\left(t, c-2^{\prime}\right)$ and $18.4\left(q, C-6^{\prime}\right)$ due to the olivose residue; $167.7\left(\mathrm{~s}, \mathrm{C}-1^{\prime \prime}\right)$, $146.5\left(\mathrm{~d}, \mathrm{C}-\mathbf{3 n}^{\prime \prime}\right), 145.8$ (d, $\mathrm{C}-5^{\prime \prime}$),
 7"), $22.7(t, c-9 ")$ and $14.3\left(q, C-10^{\prime \prime}\right)$ due to the $2,4-d e c a d i e n o i c a c i d m o i e t y$. Long range selective proton decoupling (LSPD) experiments established the tetracyclic structure and the ${ }^{13}$ C chemical shift assignments of the chromophore moiety as shown in Fig.2. The linkage of C and D rings was proved by observing nuclear overhauser effect between $4-H_{2}$ and 5-H. Thus, the structure of the chromophore was established to be 4a, 12b-dihydro-4a, 8, 12b-trihydroxy-3-methyl-benz[a]anthracene-1, 7, 12 (4H)-trione.

Fig. 2 .

$\longrightarrow: J_{\mathrm{C}-\mathrm{H}}(\mathrm{Hz})$

The long range coupling between $10-H$ and $1^{\prime}-H$ indicates that the olivose residue is connected to $C-9$ position with a C-glycosidic linkage.

Hydrolysis of 1 with 0.1 N NaOH at room temperature for 30 min gave a rearranged chromophore with a C-olivoside (2) [$\mathrm{C}_{25} \mathrm{H}_{22}{ }^{0}{ }_{8}$; FAB-MS, m/z 451 $\left.(M+H)^{+}\right]$and a $2,4-d e c a d i e n o i c$ acid (3) [$C_{10} H_{16} \mathrm{O}_{2}$; EI-MS, $\mathrm{m} / \underline{z} 182$ (M^{+}, methyl ester)].

The ${ }^{1} H$ and ${ }^{13} \mathrm{C}$ NMR spectra in DMSO-d6 revealed that the compound $\underline{2}$ consists of a tetracenequinone chromophore and an olivose moiety. Based on LSPD experiments, the structure of $\underline{2}$ was elucidated as shown in fig. 3. Such a rearrangement as involved in the conversion of 1 with the modified benz[a]anthraquinone into the tetracenequinone derivative (2) was reported in case of aquayamycin ${ }^{6)}$, an isotetracenone antibiotic.

Fig. 3. The structure of ?

The compound 3 was determined to be (E, E)-2,4-decadienoic acid ${ }^{4}$) by the ${ }^{1} H$ NMR spectral data in pyridine-d . The geometrical configurations were elucidated by the coupling constants of olefinic protons ($J_{2-H, 3-H}=15.4 \mathrm{~Hz}$, J 4$\mathrm{H}, 5-\mathrm{H}=15.0 \mathrm{~Hz}$).

Treatment of 1 with 0.1 N HCl at $100^{\circ} \mathrm{C}$ for 10 min yielded a rearranged product (4) $\left[\mathrm{C}_{35} 5^{\mathrm{H}} 36^{\circ} 9\right.$; FAB-MS, $\left.\underline{m} / \underline{z} 601(M+H)^{+}\right]$. Comparison of the ${ }^{13} \mathrm{C}$ NMR spectrum 5) of $\underline{4}$ with those of $\underline{2}$ and $\underline{3}$ indicates that the compound 4 consists of $\underline{2}$ and 3. Since the acylation shift was observed on 4'-H ($\delta 2.90 \rightarrow 4.67$), the structure of $\underline{4}$ was determined to be a $4^{\prime}-0-[(\underline{E}, \underline{E})-2,4-$ decadienoyl] derivative of .

Thus, it is concluded that the structure of capoamyoin (1) is as shown in

Fig. 1 with the uncertainty about the stereochemistry of the ring juncture between C and D and the absolute configuration.

Acknowledgement

This work was supported in part by a Grant-in-Aid for Developmental Scientific Research from The Ministry of Education, Science and culture of Japan (No. 59860012) to N.O.

References and footnotes

1) Y. Hayakawa, T. Iwakiri, K. Imamura, H. Seto and N. $\bar{o} t a k e, ~ J . ~ A n t i b i o t i c s, ~$ in press.
2) Y. Ichikawa, J. Cell. Physiol., 74, 234 (1969).
3) ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra were obtained on a JEOL GX-400 spectrometer operating at 400 MHz and 100 MHz , respectively. Chemical shifts are given in ppm using TMS as internal standard.
4) ${ }^{13} \mathrm{C}$ NMR spectral data of 3 in CDCl_{3} are as follows: $\delta 171.4(\mathrm{C}-1)$, 147.2 (C3), $145.9(C-5), 128.0(C-4), 117.8(C-2), 33.0(C-6), 31.6(C-8), 28.6(C-$ 7), $22.7(C-9)$ and $14.3(C-10)$.
5) ${ }^{13} \mathrm{C}$ NMR spectral data of 4 in $\mathrm{CDCl}_{3}-\mathrm{CD}_{3}$ OD are as follows: 0 187.5(C-7), $186.3(C-12), 167.3(C-1 "), 162.3(C-1), 158.3(C-8), 155.3(C-5), 146.0$ $\left(c-3^{\prime \prime}\right), 145.5\left(c-5^{\prime \prime}\right), 141.3(c-3), 136.3(c-9), 132.7(c-10), 132.5(c-11 a)$, $128.7(c-1 a), 127.7\left(c-4{ }^{\prime \prime}\right), 125.4(c-6 a), 124.7(c-5 a), 118.5(c-11), 117.9$ $\left(c-2^{\prime \prime}\right), 117.5(C-6), 116.4(C-7 a), 116.0(c-4), 115.5(c-2), 108.9(c-12 a)$, $78.3\left(C-4^{\prime}\right), 74.4\left(C-5^{\prime}\right), 71.3\left(C-1^{\prime}\right.$ and $\left.C-3^{\prime}\right), 39.9\left(C-2^{\prime}\right), 33.1\left(C-6^{\prime \prime}\right)$, $31.4\left(\mathrm{C}-8^{\prime \prime}\right)$. $28.4\left(\mathrm{C}-7^{\prime \prime}\right), 22.6\left(\mathrm{C}-9^{\prime \prime}\right), 22.3\left(3-\mathrm{CH}_{3}\right), 18.2\left(\mathrm{C}-6^{\prime}\right)$ and $14.0(\mathrm{C}-$ 10").
6) M. Sezaki, S. Kondo, K. Maeda, H. Umezawa and M. Ohno, Tetrahedron, $\underline{2} \underline{6}, 5171$ (1970).
(Received in Japan 31 March 1985)
